Dr. Mario Alberto Flores Valdez

Dr. Mario Alberto Flores Valdez


Doctorate in Biochemical Science


Research Scientist B

S.N.I. Level: I


Tel:+52 (33) 3345.5200 ext. 1301

Fax:+52 (33) 3345.5200 ext. 1001

E-mail: floresv@ciatej.mx


1. Obviously, one of the most significant developments that has occurred in the field of medicine and has had more impact on health is vaccination, preventing innumerable cases of infections every year and saving millions of lives worldwide. Since its inception, vaccinology has been refined through a gradual transition from an empirical science to rational design, accumulated in various disciplines, among which cell biology, biochemistry, immunology and molecular biology have contributed substantially. The most important challenges for modern vaccinology is the immediate response to emerging infectious disease caused by new variants of microorganisms and antigenic variants resistant to antiviral agents and antibiotics as well as prolonging the immune or memory reprogramming response in the case of autoimmune diseases and specific activation of a specific type of response. In response to these needs, the line of development and evaluation of vaccines was created with the goal of applying innovative tools for design, development and optimization of formulations with immunoprotective properties for human and veterinary diseases interest, focusing on the use of new immunogens or mixtures thereof and new modulators or enhancers of the immune response.

2. Today, the molecular diagnosis field has specialized increasingly from the great momentum of the PCR technique, up to the most robust techniques of mass sequencing of complete genomes, allowing the prediction of disease susceptibility or whose causes were previously completely unaware. The current trend is to use diagnostic antigen detection technologies and new and more sensitive in order to achieve faster diagnosis using for example nucleic acids. In vitro laboratory tests, diagnostic segment POC (Point-of-Care Testing, RPTC) based on specific antibodies and / or antigenic proteins is the fastest growth experienced in the last decade. Most recently, nanobiotechnology is the branch that is emerging as one of the tools for greater impact in the near future due to their important applications, especially diagnostic and therapeutic. Early detection of diseases (such as Alzheimer's and cancer), early treatment and subsequent personalized level track their progress will be possible in the coming years thanks to the application of nanobiotechnology tools. Thus, the research focused on the molecular diagnosis of CIATEJ is focused on research, development and application of diagnostic methods based on cutting-edge technologies to detect with greater sensitivity, specificity or at earlier stages, various chronic degenerative diseases and human and animal infectious, helping out in finding new biomarkers and / or antigenic molecules of importance for the treatment and prevention of various diseases.

Research for the development and analysis of drugs requires the search for new bioactive molecules obtained from natural sources and the improvement of existing ones. In the case of the design and optimization of drug candidates, this is an essential strategy to innovate in the field of development of new drugs. Currently, drug development is an interdisciplinary field where bioinformatics, physiological, physicochemical and pharmacological knowledge are combined. The goal is to minimize side effects, decrease the likelihood of emergence of antibiotic-resistant organisms, and to reduce toxicity to a minimum. These features are essential to the development of new drugs globally competitive. Due to the recall of many drugs in his stage IV (post-marketing) in the last decade, large pharmaceutical companies have sought new molecules not only with classical approaches e.g. high-capacity screening (HTS), but also through more rational e.g. phenotypic screening, virtual approaches (docking), fragments, by biomarkers, etc. from partnerships with academia and other small or medium-sized companies working mainly in the early stages of the design and optimization of bioactive molecules.

1. Project FMSLP-2008-C01-86674 of the Joint Fund CONACYT-State Government of San Luis Potosi, “Identification of Antigens Modulating Innate Immune Response Associated with the Development of Tuberculosis.” Ongoing, scheduled for 2008-2010.

2. Project CB-2007-01-81018 Sector Research Fund for Education SEP-CONACYT, “Identification of mycobacterial genes involved in susceptibility to cathelicidins: role in pathogenesis and treatment “. Ongoing, scheduled for 2008-2011.

3. Project S0008-2008-1-86396 Sector Fund for Research in Health and Social Security SSA / IMSS / ISSSTE-CONACYT: “Generation of a new tuberculosis vaccine with potential to provide more protection for both healthy and immunocompromised individuals.” Ongoing, scheduled for 2008-2010.

What do we do in CIATEJ to develop vaccines against tuberculosis?
In my group, we take as a basis the current BCG vaccine, and eliminated a gene relevant for multiplication in macrophages (named for illustrative purposes BCG-Biofilm ++). This process was achieved by homologous recombination of the gene for another conferring resistance to an antibiotic. With this recombinant BCG bacteria, we developed hypotheses about its ability to increase stress tolerance derived from the combination of acidic pH and NaNO2, which simulate that stress produced by reactive nitrogen species, relevant for the persistence in the individual receiving the vaccine. Through experiments in BALB / c immunocompetent mice, we found that immunization with BCG-Biofilm++ increased proliferation of CD8 + T + IFNᵞ than those obtained with wild BCG, and finally found that a dose of 1/3 of our modified vaccine protects similarly to a full dose of conventional BCG after 26 weeks of intratracheal infection respect to weight loss, and significantly better than the controls without vaccine, suggesting that our strain could be more immunogenic than what is available today.

We have also generated another recombinant BCG strains, which have shown promising results in preliminary tests, regarding the ability to protect against progressive infection in murine models. Thus, these vaccine candidates await further preclinical characterization. Also, thanks to the necessity and appropriateness of relevant comorbidities in Mexico, I have interest in evaluating the effect of vaccine candidates in population with increased susceptibility to tuberculosis, as occurs in people with diabetes.


1. Marissa Beatriz Cortés Serna, bachelors Chemistry Pharmacology Biology, University of Guadalajara. Thesis: “Comparison of the activity of cathelicidins Bac2A and HHC-10 against Mycobacterium bovis BCG in vitro”. In process.

2. Michel de Jesús Aceves, bachelors Chemistry Pharmacology Biology, University of Guadalajara. Thesis: Analysis of Rv1357 gene involvement in planktonic and biofilm growth of Mycobacterium bovis BCG. In process.


1. Yessica Yadira Llamas González, Master of Science, PICYT. Thesis “Search and isolation of mycobacteria with altered susceptibility to cathelicidins”. In process, 2010-2012.

Dr. Mario Alberto Flores Valdez


Nombramiento: Doctorado en Ciencias (Bioquímica, Instituto de Biotecnología, UNAM).
Institución: Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco. A.C. Av. Normalistas 800. Colinas de la Normal. 44270 Guadalajara, Jalisco. México.
Teléfono. (33) 33455200
Ext. 1301.
E-mail: floresv@ciatej.mx
Grupo de Investigación: Biotecnología Médica y Farmacéutica.

Sistema Nacional de Investigadores: Nivel I
Categoría: Investigador Titular B.
CVU: 83675
Área de conocimiento: Biología y Química
Disciplina: Microbiología
Subdisciplina: Bacteriología/Biología Molecular/Microbiología Molecular


1. Estudios sobre formación de biopelículas en Mycobacterium bovis BCG, su participación en infección y potencial de uso en desarrollo de vacunas.

2. Desarrollo y evaluación de vacunas recombinantes contra tuberculosis.

1. Estudio de los Mecanismos Moleculares de Patogenicidad y Virulencia Microbiana y Relación Patógeno-Hospedante para el Desarrollo de Vacunas Experimentales.

2. Utilización de Moléculas Bioactivas para el Tratamiento de Enfermedades Infecciosas Microbianas.

¿Que hacemos en CIATEJ para desarrollar vacunas contra tuberculosis?
En mi equipo de trabajo, tomamos como base la vacuna BCG actual, y le eliminamos de su cromosoma un gen relevante en la multiplicación en macrófagos (denominada para propósitos ilustrativos BCG-Biofilm++). Este proceso se logró mediante recombinación homóloga de ese gen por otro de resistencia a antibiótico. Con esta bacteria BCG recombinante, elaboramos hipótesis sobre su capacidad de incrementar su tolerancia al estrés derivado de la combinación de pH ácido y NaNO2, que simularía aquél producido por especies reactivas de nitrógeno, factor relevante durante la permanencia en el individuo que recibe la vacuna. Mediante experimentos realizados en ratones BALB/c inmunocompetentes, encontramos que la inmunización con la cepa BCG-Biofilm++ indujo una mayor proliferación de linfocitos T CD8+IFNᵞ+ que los obtenidos con BCG silvestre, y por último, encontramos que una dosis de 1/3 de nuestra vacuna modificada, protege de manera similar que una dosis completa de BCG sin modificar, después de 26 semanas de infección vía intratraqueal, respecto a la pérdida de peso, y significativamente mejor que los controles sin vacuna, lo cual sugiere que nuestra cepa podría resultar más inmunogénica que lo disponible hoy en ratones.

También se han generado otras cepas BCG recombinantes en CIATEJ, que han mostrado resultados prometedores en ensayos preliminares, respecto a la capacidad de proteger contra la infección progresiva en modelos murinos. Así, estas candidatas a vacuna aguardan mayor caracterización preclínica. También, merced a la necesidad y pertinencia de atender comorbilidades relevantes en México, tengo interés en evaluar el efecto de candidatos vacunales en población con mayor susceptibilidad a tuberculosis, como ocurre en personas con diabetes.

1. Evaluación de eficacia de protección contra TB de mezclas de rBCG construidas para proteger contra fase activa y persistente de enfermedad.
2. Evaluación de eficacia de protección contra TB por vacunas obtenidas de proteínas de biopelículas.
3. Evaluación de eficacia de protección contra TB de vacuna que expresa una adenilato ciclasa bajo promotor fuerte.
4. Tolerancia a fármacos de cepas con capacidad diferencial de formar biopelículas.
5. Generación de cepas de micobacterias recombiantes a partir de datos de RNASeq.
6. Distribución in vivo de cepas rBCG vacunales con marcadores fluorescentes.

Solicitud expediente MX/a/2013/013771, folio MX/E/2013/085814 ante el Instituto Mexicano de la Propiedad Industrial. “Una cepa de Mycobacterium bovis BCG recombinante carente del gen BCG1419c, con capacidad incrementada de formar biopelículas”.

Solicitud internacional expediente PCT/MX2014/000168, Una cepa de Mycobacterium bovis BCG recombinante carente del gen BCG1419c, con capacidad incrementada de formar biopelículas”.

Solicitud expediente MX/a/2015/015918, folio MX/E/2015/084127 ante el Instituto Mexicano de la Propiedad Industrial. “Una cepa de Mycobacterium bovis BCG recombinante carente del gen BCG1416c, con capacidad de protección mejorada contra tuberculosis como candidato a vacuna contra esta enfermedad”.

1.- Miembro del SNI, nivel 1.
2.- Premio “Jesús Kumate”, Segundo lugar en Investigación Biomédica por el trabajo La adenilato ciclasa Rv2212 de Mycobacterium tuberculosis altera el proteoma e induce un fenotipo atenuado en Mycobacterium bovis BCG”. Asociación Mexicana de Infectología y Microbiología Clínica. Guadalajara, Jalisco, junio de 2013.


Yadira Llamas González, Maestría en Ciencias, PICYT. Tesis “Eficacia in vivo del péptido sintético HHC-10 contra Mycobacterium bovis BCG”. Fecha de examen: 17 de enero, 2013.
Saira Alejandra Montero Pérez, Maestría en Ciencias, PICYT. Tesis: “Alteraciones en el proteoma de Mycobacterium bovis BCG ocurridas por señalización alterada vía di-GMP cíclico durante la formación de biopelículas in vitro”. Fecha de examen: 24 de febrero 2012.
Perla Jazmín Vega Domínguez, Maestría en Ciencias, PICYT. Tesis: “Efecto del gen BCG1416c en la formación de biopelículas in vitro en Mycobacterium bovis BCG Pasteur 1173P2”. Fecha de examen: 12 de diciembre de 2014.