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A B S T R A C T

The objective of this work was to evaluate if Cocoa Proteins (CP) from the cocoa-bean were able to reduce factors
related to obesity and activated related gene targets against white adipose tissue (WAT) dysfunction in a rat
model of hypercaloric diet-induced obesity. The results showed that the administration with 150mg/kg/day of
CP on a hypercaloric diet reduces body-weight gain, relative weight of WAT, serum triglycerides, NEFAs, insulin,
and leptin levels, and pro-inflammatory factors, with an increase in serum HDL levels, activation (AMPK, PPAR-
γ, PPAR-α, SIRT1, Plin1, and PGC-1α) and repression (TNF-α, SREBP-1c, Leptin and ACC) of the mRNA of
transcription factors and proteins related to WAT dysfunction. The CP prevented dysfunction in WAT who is
related to obesity by down-regulation of factors related to lipogenesis and up-regulation of those related to
energy expenditure, lowering the release of triglycerides and NEFAs into peripheral tissues, thus decreasing pro-
inflammatory processes.

1. Introduction

According to the World Health Organization (WHO), in 2016, the
world population with overweight and obesity reached 1.9 billion,
which is equivalent to 25.85% of the population. Therefore, the WHO
considers obesity a pandemic of the XXI century. Obesity and over-
weight have been recognized as causing factors for non-communicable
diseases (NCD), such as ischemic cardiopathy, cerebrovascular acci-
dents, and type 2 diabetes mellitus that accounted for 29.8% deaths
(16.8 million in 2016) of the total deaths worldwide.

It has been shown that obesity produces inflammation of the white

adipose tissue (WAT), resulting from the accumulation of free-fatty
acids (FFA) derived from the diet or de novo lipogenesis and their sto-
rage in the form of triglycerides (TG). The excess of TG in WAT leads to
inflammation, increasing the blood release of reactive oxygen species
(ROS) and numerous pro-inflammatory mediators, such as tumor ne-
crosis factor alpha (TNF)-α, interleukine (IL)-6, and MCP-1 (McNelis &
Olefsky, 2014; Minamino et al., 2009). This state causes hypoxia, fi-
brosis, necrosis, and the final dysfunction of the WAT. When WAT loses
its FFA storage capacity, leads to an increase in the circulating levels of
lipids which are deposited in peripheral tissues that are not specialized
for their storage, provoking lipotoxicity, dyslipidemia, β-cell
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dysfunction, insulin resistance (IR), hypertension, atherosclerosis, and a
pro-thrombotic state (Mlinar & Marc, 2011; Unger & Scherer, 2010;
Wang, Scherer, & Gupta, 2014). All of these factors are involved in the
development of cardiovascular diseases and type 2 diabetes mellitus,
which comprise major global health problems (Libby, Ridker, &
Hansson, 2011). In spite of the effectiveness demonstrated against
cardiovascular diseases and type 2 diabetes mellitus for pharmaceutical
products, they also exert adverse effects that limit their use. Thus,
statins have demonstrated to cause myotoxicity, harming and debili-
tating muscular tissue even after interruption of the treatment (Padala
& Thompson, 2012; Sathasivam, 2012). Functional foods are being
considered a promising alternative because of their efficacy and the
absence of side effects. They are foods rich in proteins, peptides, and/or
other phytochemicals that can exert a preventive or co-adjuvant effect
in the treatment of NCD (Aluko, 2015; Girgih, Alashi, He, Malomo, &
Aluko, 2014). Functional plant-protein enriched foods have demon-
strated beneficial effects against obesity by inhibiting adipogenesis,
(Kim, Kim, Kim, & Nam, 2015) or acting as hypolipemiant (Howard &
Udenigwe, 2013).

Cocoa (Theobroma cacao L., Sterculiaceae family) “Criollo” variety
was cultivated by the Mayas over 1500 years ago in Central America
(Motamayor et al., 2002). The market for cocoa is more demanding in
terms of sensory quality; thus, the “Criollo” variety is utilized for the
elaboration of great quality chocolates, highly priced worldwide. In
addition to its nutritional value, some studies have evidenced the
beneficial effects against metabolic diseases, chronic inflammation, and
hypertension of different phytochemicals present in cocoa such as
polyphenols and flavonols (CPF) (Ali, Ismail, & Kersten, 2014;
Rabadán-Chávez, Reyes-Maldonado et al., 2016; Rabadan-Chávez,
Quevedo-Corona, Garcia, Reyes-Maldonado, & Jaramillo-Flores, 2016b;
Rabadán-Chávez, Miliar Garcia et al., 2016). Furthermore, cocoa con-
tains an elevated concentration of high-quality protein (14%), rich in
hydrophobic and aromatic amino acids (de Brito et al., 2001; Ismail
et al., 2012). Two storage cocoa proteins, called albumin (P32765) and
vicilin (Q43358) with a protein content of 52 and 43%, respectively
(Voigt, Biehl, & Wazir, 1993), have been well characterized, and some
of their biological functions have been demonstrated (Rawel, Huschek,
Sagu, & Homann, 2019). However, although the evidence on the role of
plant protein-derived peptides against obesity has grown significantly
(Howard & Udenigwe, 2013; Yao, Agyei, & Udenigwe, 2018), no data
are available about the potential of cocoa proteins to release peptides
with beneficial effects against this chronic disorder. Thus, the objective
of this work was to evaluate the potential of cocoa (Theobroma cacao
var. “Criollo”) protein in a diet-induced obesity rat model, focusing on
its effects on biochemical and molecular biomarkers associated with
WAT dysfunction. The results from this stidy will allow increase the
knowledge about the health benefits of Criollo cocoa proteins pro-
moting its use as ingredient of new functional foods.

2. Materials and methods

2.1. Protein extraction from cocoa beans

Cocoa variety “Criollo” beans were collected in the Municipality of
Tuxtla Chico, Chiapas, Mexico. The seeds were obtained from the pods,
the mucilage and coat were removed, and the seeds were lyophilized
and stored at −20 °C. The seeds were ground, and the flour was de-
fatted in three phases: 1:15 (w/v) flour was dissolved in hexane:-
chloroform (2:1, v/v), with three times-magnetic stirring during
90min, and centrifugation at 4700g for 20min at 4 °C. Once the su-
pernatant was removed, the pellet was collected and allowed to dry in
the extraction hood. The dry pellet was used to obtain the acetone dry
powder (AcDP) that was prepared according to Voigt (Voigt et al.,
1993) the cocoa protein (CP) was extracted from AcDP that was dis-
solved in a solution containing l0 mM Tris-HC1 (with 2mM EDTA, pH
7.5), 0.5 M NaCl (with 2mM EDTA and l0 mM Tris-HCl, pH 7.5), and

0.1 N NaOH. The supernatants were collected in each phase, mixed, and
precipitated with 6 N HCl (pH 3.4), and centrifuged at 10,000g for
20min at 4 °C. The final supernatant was discarded and the pellet was
lyophilized and stored at −20 °C until further analysis.

2.2. Experimental animals

The methodology described (Grasa-López et al., 2016; Rabadán-
Chávez, Reyes-Maldonado et al., 2016; Rabadan-Chávez, Quevedo-
Corona et al., 2016, Rabadán-Chávez, Miliar Garcia et al., 2016) was
followed to carry out the animal experiment. Male Wistar rats
(180 ± 5 g of body weight) were used and randomly divided into three
dietary groups (n=7 per group) as follows: i) Standard Diet (STD)
(Rodent Diet 2018, Teklad Global Harlan Laboratories, Inc., Madison,
WI, USA), with a nutritional value of 3.1 kcal/g as energy density. The
composition of the STD was: 44.2% carbohydrate, 18.6% protein, 6.2%
fat, 3.4% polyunsaturated fatty acids (PUFA), 1.3% monounsaturated
fatty acids (MUFA) and 0.9% saturated fatty acids (SFA); ii) High-Fat
diet (HF) (TD. 88137; Teklad Global Harlan Laboratories, Inc.), with a
nutritional value of 4.5 kcal/g and which composition was: 48.5%
carbohydrate, 21.2% fat, 17.3% protein, 12.8% SFA, 5.6% MUFA, and
1.0% PUFA; and iii) HF+ intragastric administration of CP in PBS so-
lution (150mg/kg/day) (HF+CP), using a feeding cannula. Animals
were fed ad libitum with free access to water. Feed consumption was
monitored daily and body weight was measured weekly throughout the
experiment. The design of the experimental study is shown in Fig. 1. At
the end of the experimental period, rats fasted for 12 h and they were
anesthetized with pentobarbital sodium (35mg/kg i.p.). The three WAT
deposits were collected: retroperitoneal (rWAT), mesenteric (mWAT)
and epididymal (eWAT). The excess of blood was removed by washing
them with 1X phosphate buffer saline (PBS), and deposits were dried
and their weight was measured. The percentage of relative weight was
calculated as follows:

Relative weight (%): [WAT weight (g)× 100]/Body weight (g)

The experimental protocol was performed in accordance with the
Ethics Code for Animal Studies of the Escuela Nacional de Ciencias
Biológicas (ENCB-IPN, Mexico City, Mexico) and the Guide for the Care
and Use of Laboratory Animals of the Mexican Council for Animal Care
(NOM-062-ZOO-1999).

2.3. Biochemical analysis

At week 8, rats were overnight fasted and blood glucose levels were
measured in venous blood using a glucometer (ACCU-CHEK® Performa,
Roche Diagnostics, Indianapolis, IN, USA). In serum, the levels of
cholesterol-LQ (#Ref.:41019, Spinreact CIMA Diagnostics, Spain), TG
(#Ref.:41033; Spinreact CIMA Diagnostics, Spain), NEFA
(#Ref.:FA115; Randox Laboratories LTD, United Kingdom;), HDL-c
(#Ref.:1001097; Spinreact CIMA Diagnostics, Spain) and LDL-c
(#Ref.:41023, Spinreact, CIMA Diagnostics, Spain) were determined
using a semi-autoanalyzer (Ekem Control Lab, Mindray, China).

2.4. Enzyme-Linked ImmunoSorbent Assay (ELISA)

Serum levels of rat leptin, insulin, IL-4, IL-10, TNF-α, and MCP-1
were measured using commercial Enzyme-Linked ImmunoSorbent
Assay (ELISA) kits, following the manufacturer’s protocols (CUSABIO,
Biotech Co., Ltd). Homeostasis Model Assessment of Insulin Resistance
(HOMA-IR) was calculated from the following formula:

HOMA-IR= fasting serum insulin (µU/mL)× fasting blood glucose
(mg/dL)/405.
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2.5. RNA extraction and reverse-transcription polymerase chain reaction

The relative expression by Real-time PCR was carried out according
to the methodology used by Rabadan-Chávez, Quevedo-Corona et al.
(2016), Rabadán-Chávez, Miliar Garcia et al. (2016), using the rWAT as
sample. The forward and reverse primer sequences of the selected genes
are listed in Table 1. The relative expression levels of the messenger
RNA (mRNA) target genes were normalized to 18S mRNA levels. The
fold change or relative quantification in gene expression was de-
termined using the 2−ΔΔC

T method (Livak & Schmittgen, 2001). Results
were expressed in relation to the average expression of the STD group.

2.6. Statistical analysis

Data were expressed as mean values ± Standard Error of the Mean
(SEM). All data were tested for normality and equality of variance using
the Shapiro-Wilks and Levene test. One-way ANOVA was performed
followed by the Holm-Sidak test (Sigma Plot ver. 12.0; SYSTAT
Software, San Jose, CA, USA), for multiple comparisons in all quanti-
tative variables. A value of p < 0.05 represented a significant differ-
ence. Figure constructions were performed using GraphPad Prism ver. 6
statistical software (GraphPad Software, San Diego, CA, USA).

3. Results

3.1. Effects of cocoa protein on energy intake, body weight, and the relative
weight of WAT

According to the experimental design proposed (Fig. 1), energy
consumption and weight of male Wistar rats were measured daily and
weekly, respectively. The increase in weight of the group fed HF-diet
was 301.6 ± 4.60 g, significantly greater (p < 0.001) than that mea-
sured in the group fed HF+CP-diet (278.5 ± 6.50 g) (Fig. 2A and B).
However, energy consumption was similar in both groups (Fig. 2C and
D). In Fig. 2E, the relative WAT weight of intra-abdominal fat mass of
three deposits: retroperitoneal WAT (rWAT); epididymal WAT (eWAT),
and mesenteric WAT (mWAT) is shown. The group fed the STD-diet
showed the lowest intra-abdominal fat mass content (3.80 ± 0.19%),
compared with the group fed the HF-diet (7.50 ± 0.17%; p < 0.001),
and the group fed the HF+CP-diet (6.80 ± 0.27%) that were also
significantly different (p < 0.001). Additionally, the relative intra-ab-
dominal fat mass of eWAT and mWAT in animals fed HF+CP-diet
were 2.50 ± 0.13% and 1.26 ± 0.08%, respectively, significantly
lower than those determined in the group fed HP (p < 0.001). How-
ever, the percentage of fat present in rWAT was similar in HF+CP
(2.97 ± 0.12%) and HF (3.00 ± 0.06%) groups. Both groups fed the
HF diet showed a higher percentage of fat in the three depots in com-
parison with the STD group.

Fig. 1. Animal model experimental design.

Table 1
Sequences of primers used for RT-PCR.

Target gene Forward primer (5′–3′) Reverse primer (5′–3′)

PPARα TTTAGAAGGCCAGGACGATCT GCACTGGAACTGGATGACAG
PPARγ GGGGGTGATATGTTTGAACTTG CAGGAAAGACAACAGACAAATCA
PGC-1α GGGTCATTTGGTGACTCTGG GCAGTCGCAACATGCTCA
SIRT1 AACTTCACAGCATCTTCAATTGTATT TGACACTGTGGCAGATTGTTATT
TNF-α GCCAGAGGGCTGATTAGAGA CAGCCTCTTCTCCTTCCTGA
IL-10 TCATGGCCTTGTAGACACCTT AGTGGAGCAGGTGAACAATGA
lep AATGAAGTCCAAACCGGTGA CCAGGATCAATGACATTTCACA
ApN TGGTCACAATGGGATACCG CCCTTAGGACCAAGAACACCT
CD36 TCGAGACTTCTCACCAAGAGG GGGAAAGTTATTGCGACATGA
SREBP-1c ACAAGATTGTGGAGCTCAAGG TGCGCAAGACAGCAGATTTA
LPL GTCTTGGAGCCCATGCTG GGGGCTTCTGCATACTCAAA
ACC GATCCCCATGGCAATCTG ACAGAGATGGTGGCTGATGTC
AMPK-α TCTTACCTCATCCGTGACCTC CCTGGTCTTGGAGCTACGTC
PLIN1 TGTACAGGGTGCCAGCAA GCAGGCCAACTCATTAGCAG
18S CGAACGTCTGCCCTATCAAC TTGGATGTGGTAGCCGTTTC
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3.2. Effect of cocoa protein on serum biomarkers and lipid inflammation
mediators

The obesity-associated inflammatory markers were measured in
serum (Fig. 3). The concentration of anti-inflammatory IL-10 in the STD
group (50.05 ± 5.20 pg/mL) was significantly greater than that de-
termined in the groups fed HF (18.26 ± 3.16 pg/mL) and HF+CP
(13.21 ± 2.3 pg/mL), without significant differences between them
(Fig. 3A). Similarly, no differences were observed in IL-10 mRNA levels
in rWAT between HF and HF+CP groups (Fig. 3F). However, the re-
ductions in the anti-inflammatory IL-4 levels caused by the HF-diet
(38.00 ± 0.50 pg/mL) were partially reverted through the adminis-
tration of CP (42.42 ± 1.9 pg/mL), reaching values similar to that
determined in the STD group (44.9 ± 2.04 pg/mL) (Fig. 3B).

The serum concentration of the TNF-α is shown in Fig. 3C, where

the levels increased significantly (p < 0.001) in the HF group
(13.30 ± 0.12 pg/mL) in comparison with the control group
(6.25 ± 0.02 pg/mL). The administration of CP significantly decreased
the levels of TNF-α up to 12.40 ± 0.05 pg/mL (p < 0.001), compared
with the HF group. In Fig. 3D, the level of the pro-inflammatory che-
mokine MCP-1 was increased after ingestion of the HF-diet
(65.80 ± 1.70 pg/mL) while the co-administration of CP reduced it up
to 45.60 ± 0.90 pg/mL. The mRNA levels of TNF-α measured in rWAT
(Fig. 3E) of the group fed HF-diet were significantly higher than that
measured in the STD and HF+CP groups (4.21- and 1.5- times greater,
respectively).

3.3. Effect of cocoa protein on the serum lipid profile and leptin levels

In Fig. 4A and B, the levels of total cholesterol and LDL-c in the

Fig. 2. Effect of “Criollo” cocoa proteins on (A) body weight, (B) body weight gain, (C, D) energy intake, and (E) relative weight of white adipose tissue (WAT). Data
represented as mean ± Standard Error of the Mean (SEM) (n= 7). a,b,c indicate significantly different values (p < 0.001) by one‐way ANOVA analysis.
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serum of animals showed no statistical differences among the three
groups (p < 0.05). However, HDL-c levels decreased significantly in
the HF group (52.1 ± 1.7mg/dL) compared with STD
(57.5 ± 3.6mg/dL) and HF+CP groups (59.8 ± 1.9mg/dL) without
significant difference between these groups (Fig. 4C). Administration of
CP also reverted the increase in TG levels (127.6 ± 4.1mg/dL) caused
by the HF diet (149.1 ± 11.7 mg/dL) although the value was still
higher than that determined in the STD group (69.4 ± 5.2mg/dL)
(Fig. 4D). This reversion was also observed for NEFAs levels
(0.92 ± 0.04mEq/L in HF group and 0.70 ± 0.03mEq/L in HF+CP
group) (Fig. 4E). The levels of serum leptin in the animals fed HF-diet
(4.92 ± 0.53 ng/mL) was 4.1- and 1.5-times higher than those de-
termined in animals fed STD-diet (1.2 ± 0.06 ng/mL) and HF+CP
diet (3.14 ± 0.26 ng/mL), respectively (Fig. 4F).

3.4. Effect of cocoa protein on glucose homeostasis and insulin resistance

The serum glucose levels are shown in Fig. 4G. A significant increase
was observed when animals were fed HF diet alone or in combination
with intragastric CP-treatment in comparison with animals fed STD.
However, increased insulin levels in HF animals were reverted by CP

(Fig. 4H). Similarly, HOMA-IR was reduced by CP administration
(Fig. 4I) without reaching the values shown by the STD group.

3.5. Effects of cocoa protein on gene expression in retroperitoneal white
adipose tissue (rWAT)

The ingestion of HF-diet supplemented with CP induced epigenetic
changes on the rWAT mRNA level, as it is observed in Fig. 5. Thus, the
expression of PPAR-α mRNA in the animals fed HF-diet decreased 3.5-
and 9-times in comparison with HF+CP and STD groups, respectively.
For the PPAR-γ gene, the expression in the HF+CP group was 11.6-
times higher than that of the STD group and 1.6-times compared to the
HF group (Fig. 5A and B). The mRNA expression levels of ApN were
increased in animals fed HF diet, and more notably in animals treated
with CP (Fig. 5C). However, CP was able to revert the increase in leptin
gene expression provoked by HF diet, and thus, these levels were 2-
times lower than that determined in animals fed HF diet (Fig. 5D). A
1.7-time reduction of HF-induced SREBP-1c gene expression was also
observed in the HF+CP group (Fig. 5E). However, in the case of the
relative expression of CD36, although increased in both groups fed the
HF diet, there were no significant differences (p < 0.05) between them

Fig. 3. Effect of “Criollo” cocoa proteins on the levels of inflammation-associated cytokines: (A) interleukin (IL)-10, (B) IL-4, (C) tumor necrosis factor (TNF-α), (D)
MCP-1, and the relative expression of (E) TNF-α and (F) IL-10. Data represented as mean ± Standard Error of the Mean (SEM) (n= 7). a,b,c indicate significantly
different values (p < 0.001) by one‐way ANOVA analysis.
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Fig. 4. Effect of “Criollo” cocoa proteins on the serum levels of (A) total cholesterol, (B) LDL-cholesterol (LDL-c), (C) HDL-cholesterol (HDL-c), (D) triglycerides (TG),
(E) non-essential fatty acids (NEFAs), (F) leptin, (G) glucose, (H) insulin, and (I) HOMA-1R. Data represented as mean ± Standard Error of the Mean (SEM) (n=7).
a,b,c indicate significantly different values (p < 0.05) by one‐way ANOVA analysis.
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(Fig. 5F).
The levels of LPL expression in HF and HF+CP groups did not

presented significant differences among them, but were significantly
higher than in STD group (p < 0.05, Fig. 5G) while the expression of
ACC was increased in HF and reduced in CP group by 1.54-times
compared with the HF group (Fig. 5H). Effects of CP were also observed
in the expression of AMPK-α which was reduced to values similar to
those determined in the animals fed STD (p < 0.05, Fig. 5I). In the case
of PGC-1α, the reduced expression of this biomarker due to the HF diet
was normalized by CP administration (Fig. 5J). Fig. 5K shows the re-
lative expression of SIRT1 gene that was reduced in the group fed HF
diet. However, no significant differences were observed between groups
fed STD and HF+CP-diets (p < 0.05). The expression of Plin1 gene
(Fig. 5M) was 7.4-times increased in the HF+CP group compared with
the HF group.

4. Discussion

The present study examined the functional effects of the variety
“Criollo” cocoa proteins on WAT dysfunction and obesity-associated
serum parameters in a diet-induced obesity rat model. In this study, the
protective effect of CP against the weight gain caused by the ingestion
of HF-diet was demonstrated, without affecting energy consumption.
Similar effects have been described when mice models were fed soy-
bean protein isolates (Aoyama et al., 2000; Jang et al., 2008). In WAT,
CP helped to decrease the mass of mesenteric and epididymal fat.
Studies conducted with black soy proteins revealed a diminution of
weight in the eWAT of C57Bl/6 mice (Jang et al., 2008). In our study, it
is important to consider that the retroperitoneal fat determined in both
groups fed HF diet did not exhibit differences, although total fat content
was significantly lower in the group treated with CP. On the other hand,
similar effects have been observed for CPF, where weight gain and
intra-abdominal fat mass were reduced in rats fed fat-rich diets

Fig. 5. Effect of “Criollo” cocoa proteins on the expression of genes associated with WAT dysfunction. (A) PPAR-α, (B) PPAR-γ, (C) ApN, (D) leptin, (E) SREBPc, (F)
CD36, (G) LPL, (H) ACC, (I) AMPK-α, (J) PGC1-α, (K) SIRT1, and (L) Plin1. Data represented as mean ± Standard Error of the Mean (SEM) (n= 7). a,b,c indicate
significantly different values (p < 0.05) by one‐way ANOVA analysis.
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(Cordero-Herrera, Martín, Goya, & Ramos, 2015; Gu, Yu, & Lambert,
2014; Gu, Yu, Park, Harvatine, & Lambert, 2014; Rabadan-Chávez,
Quevedo-Corona et al., 2016). Obesity is a chronic disease character-
ized by the accumulation of lipids with an increase in the levels of pro-
inflammatory cytokines and a reduction of the levels of anti-in-
flammatory cytokines surrounding the WAT (Castoldi, De Souza,
Saraiva Câmara, & Moraes-Vieira, 2016). This condition has been as-
sociated with the development of NCD (Aroor, McKarns, Demarco, Jia,
& Sowers, 2013; De Pergola & Silvestris, 2013; Rose, Gracheck, & Davis,
2015). In the group fed HF diet, a greater amount in total WAT was
observed, resulting in a TNF-α increase, in comparison with the STD
and HF+CP groups. TNF-α is a pro-inflammatory cytokine which in-
duction contributes to the development of various inflammatory dis-
eases, while its inhibition favors the decrease of obesity-induced IR
(Andrade-Oliveira, Câmara, & Moraes-Vieira, 2015). In this work, the
administration of HF+CP diet decreased serum insulin levels com-
pared to HF diet, which results in the decrease of HOMA-IR index. Si-
milar effects were observed in mice fed HF diet and treated with casein
glycomacropeptide hydrolyzates (Song, Gao, Du, & Mao, 2018).

The concentration of the chemokine MCP-1 was higher in the HF
group than in HF+CP and STD groups. It is clearly observable that CP
decreased MCP-1, accelerating the infiltration of pro-inflammatory
macrophages involved in adiposity and cancer development (Li, Knight,
Snyder, Smyth, & Stewart, 2013; Panee, 2012). Therefore, the inducible
effects of CP on MCP-1 and TNF-α levels, and TNF-α expression might
contribute on the delay of the development of obesity-related in-
flammatory diseases.

The concentrations of TG and NEFAs were lower in STD and
HF+CP groups while higher content of HLD-c was observed. This re-
sults is similar to previous studies carried out in mice fed soybean β-
Conglycinin or Wistar rats fed goby fish protein and Thornback ray
protein, in which an increase of HDL levels were observed (Lassoued
et al., 2018; Nasri et al., 2018; Tsuchida et al., 2005). In other study, in
mice fed a mixture of black soy peptides, a diminution of TG levels
without changes in total cholesterol levels were described (Jang et al.,
2008).

It is known that leptin regulates the energy equilibrium and the
neuroendocrine function, producing satiety. In obesity, high levels of
leptin in serum induce a state of resistance to this hormone, inter-
rupting the delivery of signals to the hypothalamus (Ahima & Osei,
2004; Bates & Myers, 2003; Spiegelman & Flier, 2001). In this study, CP
were able to decrease the mRNA expression of this hormone in adipose
tissue, and its levels in serum. Similar results were described in mice fed
β-Conglycinin and soybean glycinin, where the authors observed an
decrease of leptin in serum (Moriyama et al., 2004) This hormone was
also reduced in 3T3-L1 adipocytes treated with soybean peptide lunasin
(Hsieh, Chou, & Wang, 2017).

With respect to the expansion of adipose tissue, PPAR-γ plays an
important role when positive energy balance occurs (i.e. after ingestion
of a HF diet) because the increase of the capacity for FFA absorption
and storage in the adipocytes, reducing the deposition of ectopic lipids,
especially in the liver and skeletal muscle (Goudriaan et al., 2005;
Vroegrijk et al., 2013) In this work, it was found that the treatment with
CP resulted in greater expression of PPAR-γ levels compared to HF
group, with the concomitant diminution of serum TG and NEFAs levels.
On the opposite way, a previous study had demonstrated inhibitory
effects of tuna-derived peptides on PPAR-γ expression, (Kim et al.,
2015) being these differences due to the use of 3T3-L1 cells instead of
animals. It was demonstrated that PPAR-γ promote apoptosis in large
and mature hypertrophic adipocytes while it stimulates the production
of small insulin-sensitive adipocytes, performing an important role in
the sensitivity to insulin (Leonardini, Laviola, Perrini, Natalicchio, &
Giorgino, 2009; Medina-Gomez et al., 2007). This was described for
Val-Pro-Pro and Ile-Pro-Pro lactotripeptides, whose capacity for indu-
cing adipocytic differentiation and the positive regulation of PPAR-γ in
3T3-F442A cells, employing insulin as a positive control, was

demonstrated (Chakrabarti & Wu, 2015). PPAR-α promotes lipolysis,
and mitochondrial and peroxisomal β-oxidation of FFA (Vega, Huss, &
Kelly, 2000). The up-regulation of PPAR-α in the WAT of animals
treated with CP concurred with the low NEFAs levels found in serum.
The normalization of SIRT1 after treatment with CP suggests the pro-
tection exerted by these proteins in WAT. It has been demonstrated that
SIRT1 protects against the obesity-induced metabolic dysregulation
acting by antagonizing metabolic deterioration in different cell lines
(Dixon, Lane, MacPhee, & Philips, 2014; Mariani et al., 2015; Ramírez,
2013; Svensson, LaBarge, Martins, & Schenk, 2017). These results have
also been demonstrated in mice, in which elimination of SIRT1 in their
adipocytes produced a greater degree of obesity-induced metabolic
dysregulation (Hui et al., 2017).

The increase of mRNA expression of PGC-1α observed after ad-
ministration of CP agree the results obtained by feeding rats with fish
(Pollachius virens) protein hydrolyzates (Liaset et al., 2009). There are
data that support that SIRT1 interacts with PGC1-α promoting its
transcriptional activity via deacetylation. Together, they regulate en-
ergy homeostasis and increase energy expenditure in WAT (Feige et al.,
2008; Qiang et al., 2012). Previous studies showed that the metabolism
of fatty acids in WAT is regulated by the interaction of PGC1-α and
PPAR-α. This occurs in the lipolysis of TG (lipid drops) form NEFAs,
which can accumulate in peripheral tissues. In order to avoid this,
PGC1-α and PPAR-α are capable of inducing the synthesis of glycerol
kinase (GyK), which produces glycerol-3-phosphate that react with
NEFAs to newly form TG. Therefore, the activity of GyK allows the
creation of a futile cycle of NEFAs mobilization and re-esterification.
The interaction of PPAR-α and PGC1-α also stimulates the β-oxidation
of NEFAs. Additionally, PGC1-α induces mitochondriogenesis and the
expression of Krebs-cycle enzymes, the respiratory-chain proteins, and
UCP-1, finally rising the utilization of NEFAs (Guan, Ishizuka, Chui,
Lehrke, & Lazar, 2005; Langin, 2010; Mazzucotelli et al., 2007;
Newsholme & Parry-Billings, 1992; Ryall & Goldrick, 1977). The posi-
tive regulation of PPAR-α, PGC1-α, and SIRT1 in WAT have been
proposed as a potential mechanism to reduce adiposity, and to improve
metabolic disorders such as IR and dyslipidemia. Recent studies have
demonstrated that the positive regulation and activation of these mo-
lecules increase the metabolic rate by promoting the β-oxidation of
fatty acids (Rodgers, Lerin, Gerhart-Hines, & Puigserver, 2008; Rutanen
et al., 2010; Tsuchida et al., 2005). Additionally, the diminution of the
expression of ACC and SREBP-1c produced in the WAT of animals
treated with CP could be an indicator of the reduction of the synthesis
of fatty acids, thus reducing lipogenesis (Kang et al., 2012). The gene
expression of transcription factor SREBP-1c regulates the lipid home-
ostasis by controlling the expression of enzymes such as FAS and HMG-
CoA reductase used for the endogenous synthesis of cholesterol, NEFAs,
and triacylglycerols (Eberlé, Hegarty, Bossard, Ferré, & Foufelle, 2004;
Fajas et al., 1999).

A very important target in this study was the AMPK pathway be-
cause its relation to the synthesis and uptake of fatty acids, mitochon-
drial biogenesis, and synthesis of lipogenic enzymes (Hardie, 2018).
Thus, the drugs that activate this pathway can comprise the most pro-
mising anti-obesity agents. AMPK improves mitochondrial biogenesis,
(Zong et al., 2002) activating or stabilizing PGC1-α, and thus, favoring
the synthesis of new mitochondrial components (Cantó et al., 2009;
Jager, Handschin, St.-Pierre, & Spiegelman, 2007). AMPK also represses
the expression of lipogenic enzymes, in part by SREBP-1c phosphor-
ylation, (Li et al., 2011) and promotes the uptake of fatty acids in cells
through fatty-acid transporter CD36 (Habets et al., 2009). The expres-
sion of AMPK was similar in both HF+CP and STD groups, indicating
that this pathway could positively activate other targets related to the
decrease of fatty acids levels found in this study. Thus, the adminis-
tration of CP was able to increase the expression of AMPK and decrease
the expression of ACC, which causes a reduction in malonyl-CoA
synthesis, a target performing a crucial role in the metabolism of fatty
acids, principally in lipogenic tissues such as liver, adipose tissue, and
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the mammary glands (Brownsey, Zhande, & Boone, 1997). Similar re-
sults were described for a mixture of isoflavone-free soy peptides, that
increased the expression of AMPK, also inhibiting the expression of ACC
in eWAT, resulting in an increase of fatty acids β-oxidation in the adi-
pose tissue (Jang et al., 2008).

Plin1 is the major lipid droplet coating-protein, playing a central
role in lipolysis regulation. In basal state, lipolysis is inhibited by Plin1.
However, phosphorylation of Plin1 by PKA initiate TG lipolysis, acti-
vating the coactivator of adipose triglyceride lipase (ATGL) (Lass,
Zimmermann, Oberer, & Zechner, 2011; Rutkowski, Stern, & Scherer,
2015). In this study, the increase in Plin1 levels observed in the group
HF+CP compared with the HF group could reduce the lipolysis of TG,
decreasing serum NEFAs and possibly their accumulation in peripheral
tissues. As a summary, the potential mechanism of action of CP in WAT
dysfunction is shown in Fig. 6.

5. Conclusions

This study demonstrates that CP were able to normalize WAT
function altered by HF ingestion through activation of mechanisms that
prevented the excessive synthesis and accumulation of lipids, and re-
duced inflammation and insulin resistance. Thus, these findings evi-
dence the beneficial effects exerted by proteins from cocoa var.
“Criollo” on obesity and associated metabolic disorders. Future research
should be performed in order to identify the compounds responsible for
the observed effects, confirming their activity and bioavailability.
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